Bilipschitz Embedding of Self-similar Sets

نویسندگان

  • JUAN DENG
  • ZHI-YING WEN
  • YING XIONG
چکیده

This paper proves that the self-similar set satisfying the strong separation condition can be bilipschitz embedded into self-similar set with larger Hausdorff dimension, and it can be embedded into a self-similar set with the same Hausdorff dimension if and only if these two self-similar sets are bilipschitz equivalent.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sharp Distortion Growth for Bilipschitz Extension of Planar Maps

This note addresses the quantitative aspect of the bilipschitz extension problem. The main result states that any bilipschitz embedding of R into R2 can be extended to a bilipschitz self-map of R2 with a linear bound on the distortion.

متن کامل

Realization of Metric Spaces as Inverse Limits, and Bilipschitz Embedding in L1 Jeff Cheeger and Bruce Kleiner

We give sufficient conditions for a metric space to bilipschitz embed in L1. In particular, if X is a length space and there is a Lipschitz map u : X → R such that for every interval I ⊂ R, the connected components of u−1(I) have diameter ≤ const ·diam(I), then X admits a bilipschitz embedding in L1. As a corollary, the Laakso examples [Laa00] bilipschitz embed in L1, though they do not embed i...

متن کامل

On metric characterizations of the Radon-Nikodým and related properties of Banach spaces

We find a class of metric structures which do not admit bilipschitz embeddings into Banach spaces with the Radon-Nikodým property. Our proof relies on Chatterji’s (1968) martingale characterization of the RNP and does not use the Cheeger’s (1999) metric differentiation theory. The class includes the infinite diamond and both Laakso (2000) spaces. We also show that for each of these structures t...

متن کامل

Bilipschitz Embedding of Grushin Plane in R3

The Grushin plane is bilipschitz homeomorphic to a quasiplane in R

متن کامل

Geometry of Grushin Spaces

We compare the Grushin geometry to Euclidean geometry, through quasisymmetric parametrization, bilipschitz parametrization and bilipschitz embedding, highlighting the role of the exponents and the fractal nature of the singular hyperplanes in Grushin geometry. Consider in Rn a system of diagonal vector fields Xj = λj(x) ∂ ∂xj , j = 1, . . . , n,

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009